Common identity of substrate binding subunit of vacuolar h-translocating inorganic pyrophosphatase of higher plant cells.

نویسندگان

  • P A Rea
  • C J Britten
  • V Sarafian
چکیده

There have been conflicting reports in the literature concerning the polypeptide composition of the vacuolar H(+)-translocating inorganic pyrophosphatase (tonoplast H(+)-PPase) of plant cells. The major subunit(s) of the enzyme have been attributed to polypeptides of relative molecular weight (M(r)) 64,500 (Beta vulgaris), 67,000 (Beta vulgaris), 73,000 (Vigna radiata), and 37,000 to 45,000 (Zea mays). Here, we reconcile these differences to show, through the combined application of independent purification, affinity-labeling, sequencing, and immunological procedures, that the major polypeptide associated with the H(+)-PPase from all of these organisms, and Arabidopsis thaliana, corresponds to the same moiety. The principal polypeptide components of the H(+)-PPase purified from Beta and Vigna by independent procedures have similar apparent subunit masses when subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under identical conditions (M(r(Beta)) = 64,500; M(r(Vigna)) = 66,000) and exhibit identical kinetics of irreversible inhibition and ligand-modified labeling by [(14)C]-N-ethylmaleimide. Similarly, the M(r) 64,500 and 67,000 polypeptides isolated from Beta by independent methods (cf. C.J. Britten, J.C. Turner, P.A. Rea [1989] FEBS Lett 256: 200-206 versus V. Sarafian and R.J. Poole [1989] Plant Physiol 91: 34-38) are indistinguishable: the two polypeptides comigrate when electrophoresed under the same conditions and yield tryptic fragments with identical overlapping sequences. Because both the N-terminal sequence of the M(r) 66,000 subunit of the H(+)-PPase isolated from Vigna and the direct sequence data from Beta align precisely with the deduced amino acid sequence of cDNAs encoding the H(+)-PPase of Arabidopsis, all three enzymes are inferred to be highly conserved structurally. Accordingly, immunoblots of membranes prepared from Arabidopsis, Beta, Vigna, and Zea, probed with antibody affinity purified against the magnesium inorganic pyrophosphate-binding, M(r) 66,000 polypeptide of Vigna, reveal a single immunoreactive band at M(r) 64,500 to 67,000 in all four preparations. The M(r) 66,000 polypeptide of Zea membranes is, however, prone to proteolysis during membrane fractionation and selective aggregation during sample denaturation for SDS-PAGE. The anomalous M(r) 37,000 to 45,000 subunit pattern previously ascribed to the H(+)-PPase from Zea (A. Chanson and P.E. Pilet [1989] Plant Physiol 90: 934-938) is attributed to loss of the M(r) 66,000 subunit and the appearance of polypeptide fragments of M(r) 44,700 and 39,000 through the combined effects of sample aggregation before SDS-PAGE and proteolysis, respectively. It is, therefore, concluded that the substrate-binding subunit of the tonoplast H(+)-PPase has a common identity in all four organisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterologous expression of plant vacuolar pyrophosphatase in yeast demonstrates sufficiency of the substrate-binding subunit for proton transport.

The membrane bounding the vacuole of plant cells contains two electrogenic proton pumps. These are the vacuolar H(+)-ATPase (EC 3.6.1.3), an enzyme common to all eukaryotes, and a vacuolar H(+)-translocating pyrophosphatase (EC 3.6.1.1), which is ubiquitous in plants but otherwise known in only a few phototrophic bacteria. Although the substrate-binding subunit of the vacuolar H(+)-pyrophosphat...

متن کامل

Kinetics of the Vacuolar H-Pyrophosphatase : The Roles of Magnesium, Pyrophosphate, and their Complexes as Substrates, Activators, and Inhibitors.

The responses of the vacuolar membrane (tonoplast) proton-pumping inorganic pyrophosphatase (H(+)-PPase) from oat (Avena sativa L.) roots to changes in Mg(2+) and pyrophosphate (PPi) concentrations have been characterized. The kinetics were complex, and reaction kinetic models were used to determine which of the various PPi complexes were responsible for the observed responses. The results indi...

متن کامل

Proton pumping inorganic pyrophosphatase of endoplasmic reticulum-enriched vesicles from etiolated mung bean seedlings.

Endoplasmic reticulum (ER)-enriched vesicles from etiolated hypocotyls of mung bean seedlings (Vigna radiata) were successfully isolated using Ficoll gradient and two-phase (polyethylene glycol-dextran) partition. The ER-enriched vesicles contained inorganic pyrophosphate (PPi) hydrolysis and its associated proton translocating activities. Antiserum prepared against vacuolar H+-pyrophosphatase ...

متن کامل

Molecular cloning of vacuolar H(+)-pyrophosphatase and its developmental expression in growing hypocotyl of mung bean.

Vacuolar proton-translocating inorganic pyrophosphatase and H(+)-ATPase acidify the vacuoles and power the vacuolar secondary active transport systems in plants. Developmental changes in the transcription of the pyrophosphatase in growing hypocotyls of mung bean (Vigna radiata) were investigated. The cDNA clone for the mung bean enzyme contains an uninterrupted open reading frame of 2298 bp, co...

متن کامل

A plant proton-pumping inorganic pyrophosphatase functionally complements the vacuolar ATPase transport activity and confers bafilomycin resistance in yeast.

V-ATPases (vacuolar H+-ATPases) are a specific class of multi-subunit pumps that play an essential role in the generation of proton gradients across eukaryotic endomembranes. Another simpler proton pump that co-localizes with the V-ATPase occurs in plants and many protists: the single-subunit H+-PPase [H+-translocating PPase (inorganic pyrophosphatase)]. Little is known about the relative contr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 100 2  شماره 

صفحات  -

تاریخ انتشار 1992